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Nonequilibrium relaxation of the two-dimensional Ising model:
Series-expansion and Monte Carlo studies
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We study the critical relaxation of the two-dimensional Ising model from a fully ordered configuration by
series expansion in timet and by Monte Carlo simulation. Both the magnetization (m) and energy series are
obtained up to 12th order. An accurate estimate from series analysis for the dynamical critical exponentz is
difficult but compatible with 2.2. We also use Monte Carlo simulation to determine an effective exponent,
zeff(t)52

1
8 dlnt/dlnm, directly from a ratio of three-spin correlation tom. Extrapolation tot→` leads to an

estimatez52.16960.003.@S1063-651X~98!11806-8#

PACS number~s!: 05.50.1q, 05.70.Jk, 02.70.Lq
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I. INTRODUCTION

The pure relaxational dynamics of the kinetic Ising mod
with no conserved fields, which is designated as modelA in
the Hohenberg-Halperin review@1#, has been studied exten
sively by various approaches. Unlike some of the other m
els in which the dynamical critical exponentz can be related
to the static exponents, it seems thatz of model A is inde-
pendent of the static exponents~however, see Ref.@2#!. In
the past 20 years, the numerical estimates for the dynam
critical exponentz scattered a lot, but recent studies seem
indicate a convergence of estimated values. Our studies
tribute further to this trend.

We review briefly some of the previous work on the co
putation of the dynamical critical exponents, concentrat
mostly on the two-dimensional Ising model. The conve
tional theory predictsz522h @3#, whereh is the critical
exponent in the two-point correlation function,G(r )
}r 2d122h. For the two-dimensional Ising model, this give
z51.75. It is known that this is only a lower bound@4#. It is
very interesting to note that series expansions@5–10# gave
one of the earliest quantitative estimates ofz. Dammann and
Reger @10# have the longest high-temperature series~20
terms! for the relaxation times so far, obtainin
z52.18360.005. However, reanalysis of the series by Ad
@11# gives z52.16560.015. There are two types of field
theoretic renormalization group analysis: thee expansion
near dimensiond54 @12,13# and an interface model neard
51 @14#. It is not clear how reliable when it is interpolated
d52. Real-space renormalization group analysis of vari
schemes was proposed in the early 1980s@15–18#, but it
appears that there are controversies as to whether some o
schemes are well defined. The results are not of high a
racy compared to other methods. Dynamic Monte Ca
renormalization group analysis@19–22# is a generalization of
the equilibrium Monte Carlo renormalization group meth
@23#. The latest work@22# givesz52.1360.01 in two dimen-
sions. The equilibrium Monte Carlo method is one of t
standard methods to estimatez @24–28#. However, long
simulations (t@Lz) are needed for sufficient statistical acc
racy of the time-displaced correlation functions. The analy
571063-651X/98/57~6!/6548~7!/$15.00
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is quite difficult due to the unknown nature of the correlati
functions. Nonequilibrium relaxation@29–34#, starting from
a completely ordered state atTc , has nice features. Th
analysis of data is more or less straightforward. The latt
can be made very large, so that finite-size effect can be
nored~for t!Lz). The catch here is that correction to scalin
due to finitet is large. Recently, the idea of damage spre
ing @35–39# has also been employed. Methods based on
tistical errors in equilibrium Monte Carlo simulation@40#,
finite-size scaling of nonequilibrium relaxation@41,42#, and
finite-size scaling of the eigenvalues of the stochastic ma
@43,44# are used to compute the exponent. A recent calcu
tion with a variance-reducing Monte Carlo algorithm for th
leading eigenvalues gives the prediction@44# z52.1665
60.0012. This appears to be the most precise value repo
in the literature.

The high-temperature series expansions for the relaxa
times are often used in the study of Ising dynamics. In t
paper, we present a new series that directly correspond
the magnetization~or energy! relaxation at the critical tem-
perature. Our series expansion method appears to be the
work that uses timet as an expansion parameter. The ge
eration of these series is discussed in Secs. II and III.
dynamical scaling mentioned in Sec. IV forms the basis
the analysis, and the results are analyzed in Sec. V. We
that the series are still too short to capture the dynamic
the scaling regime. We also report results of an extens
Monte Carlo simulation for the magnetization relaxation. W
find that it is advantageous to compute an effective dyna
cal critical exponent directly with the help of the governin
master equation~or the rate equation!. The simulation and
analysis of Monte Carlo data are presented in Sec. VI.
summarize and conclude in Sec. VII.

II. SERIES EXPANSION METHOD

In this section, we introduce the relevant notations, a
outline our method of series expansion in time variablet.
The formulation of single-spin dynamics has already be
worked out by Glauber@45#, and by Yahata and Suzuki@5#
long time ago. To our knowledge, all the previous ser
studies for Ising dynamics@5–10# are based on high
6548 © 1998 The American Physical Society
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57 6549NONEQUILIBRIUM RELAXATION OF THE TWO- . . .
temperature expansions of some correlation times. As
will see, expansion int is simple in structure, and it offers a
least a useful alternative for the study of Ising relaxat
dynamics.

We consider the standard Ising model on a square la
@46# with the energy of a configurations given by

E~s!52J(
^ i , j &

s is j , ~1!

where the spin variabless i take61, J is the coupling con-
stant, and the summation runs over all nearest neighbor p
The thermal equilibrium value of an observablef (s) at tem-
peratureT is computed according to the Boltzmann distrib
tion,

^ f &5
(
s

f ~s!exp@2E~s!/kBT#

(
s

exp@2E~s!/kBT#
5(

s
f ~s!Peq~s!. ~2!

The equilibrium statistical-mechanical model defined abo
has no intrinsic dynamics. A local stochastic dynamics c
be given and realized in Monte Carlo simulations@47#. The
dynamics is far from unique; in particular, cluster dynam
@48# differs vastly from the local ones.

A sequence of Monte Carlo updates can be viewed a
discrete Markov process. The evolution of the probabi
distribution is given by

P~s,k11!5(
s8

P~s8,k!W~s8us!, ~3!

whereW is a transition matrix satisfying the stationary co
dition with respect to the equilibrium distribution, i.e.,Peq
5PeqW. A continuous time description is more convenie
for analytic treatment. This can be obtained by fixingt
5k/N, and lettingdt51/N→0, whereN5L2 is the number
of spins in the system. The resulting differential equation
given by

]P~s,t !

]t
5GP~s,t !, ~4!

where G is a linear operator acting on the vectorP(s,t),
which can be viewed as a vector of dimension 2N, indexed
by s. If we use the single-spin-flip Glauber dynamics@45#,
we can write

G52(
j 51

N

wj~s j !1(
j 51

N

wj~2s j !F j , ~5!

where

wj~s j !5
1

2F12s j tanhS K (
nn of j

skD G , K5
J

kBT
, ~6!

andF j is a flip operator such that

F j P~ . . . ,s j , . . . !5P~ . . . ,2s j , . . . !. ~7!
e
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The flip ratewj (s j ) for site j depends on the spin value a
the site j as well as the values of its nearest neighbor sp
sk .

The full probability distribution clearly contains all th
dynamic properties of the system. Unfortunately its high
mensionality is difficult to handle. It can be shown from th
master equation, Eq.~4!, that any function of the states
~without explicit t dependence! obeys the equation

d^ f & t

dt
52^Lf & t , ~8!

where

L5(
j 51

N

wj~s j !~12F j !, ~9!

and the average off at time t is defined by

^ f & t5(
s

f ~s!P~s,t !. ~10!

Note that the time dependence of^ f & is only due toP(s,t).
For the series expansion of this work, it is sufficient to lo
at a special class of functions of the formsA5) j PAs j ,
whereA is a set of sites. In such a case we have

d^sA& t

dt
522(

j PA
^wj~s j !s

A& t . ~11!

With this set of equations, we can compute thenth derivative
of the average magnetization^s0& t . A formal solution to Eq.
~8! is

^sA& t5^e2LtsA&05 (
n50

` K ~2Lt !n

n!
sAL

0

. ~12!

This equation or equivalently the rate equation, Eq.~11!,
forms the basis of our series expansion in timet.

A few words on high-temperature expansions are in or
here. They are typically done by integrating out the tim
dependence—the nonlinear relaxation time can be define

tnl
A5E

0

`

^sA& tdt5K E
0

`

dt e2LtsAL
0

5^L21sA&0 .

~13!

The equilibrium correlation time~linear relaxation time! can
be expressed as

t5E
0

` ^m~0!m~ t !&eq

^m~0!2&eq

dt5(
j
E

0

`

dt^s0e2Lts j&eq/x

5
1

x(
j

^s0L21s j&eq, ~14!

wherex5N^m2&eq is the reduced static susceptibility. Th
average is with respect to the equilibrium distributio
Peq(s). A suitable expansion in small parameterJ/kBT can
be made by writingL5L01DL.
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6550 57JIAN-SHENG WANG AND CHEE KWAN GAN
It is clear that we can also perform the Kawasaki dyna
ics with a corresponding rate. Of course, since the magn
zation is conserved, only energy and higher order corr
tions can relax.

A very convenient form for the Glauber transition rat
Eq. ~6!, on a two-dimensional square lattice is

w0~s0!5
1

2
@11xs0~s11s21s31s4!1ys0~s1s2s3

1s2s3s41s3s4s11s4s1s2!#, ~15!

x52 1
4 tanh 2K2 1

8 tanh 4K, ~16!

y51 1
4 tanh 2K2 1

8 tanh 4K, ~17!

where the site 0 is the center site, and sites 1, 2, 3, and 4
the nearest neighbors of the center site. At the critical te
perature, tanhKc5A221, we have x525A2/24 and y
5A2/24.

III. COMPUTER IMPLEMENTATION AND RESULTS

A series expansion int amounts to finding the derivative
evaluated att50:

^sA& t5 (
n50

`
tn

n!

dn^sA&
dtn U

t50

. ~18!

The derivatives are computed using Eq.~11! recursively. A
general function is coded in C programming language to fi
the right-hand side of Eq.~11! when the configurationsA, or
the setA, is given. The setA is represented as a list o
coordinates constructed in an ordered manner. By speci
ing the flip rate as given by Eq.~15!, and considering each
site inA in turn, the configurations on the right-hand side
the rate equation are generated in three ways:~1! the same
configuration asA, which contributes a factor~coefficient of
a term! of 21; ~2! a set of configurations generated by i
troducing a pair of nearest neighbor sites in four poss
directions, with one of the sites being the site inA under
consideration, and making use of the facts i

251. We notice
that the site inA under consideration always gets annihilate
Each resulting configuration contributes a factor of2x. ~3!
Same as in~2! but two more sites, which are also the near
neighbors of the site inA under consideration, are intro
duced. These two extra sites form a line perpendicular to
line joined by the first pair of neighbor sites in~2!. Each
configuration has a factor of2y. It is instructive to write
down the first rate equation, taking into account of the latt
symmetry~e.g.,^s i&5^s0&, for all i ):

d^s0&
dt

52~114x!^s0&24y^s1s2s3&. ~19!

The core of the computer implementation for series
pansion@49# is a symbolic representation of the rate equ
tions. Each rate equation is represented by a node toge
with a list of pointers to other nodes. Each node represen
function^sA&, and is characterized by the set of spinsA. The
node contains pointers to the derivatives of this node
tained so far, and pointers to the ‘‘children’’ of this node a
-
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their associated coefficients, which form a symbolic rep
sentation of the rate equations. The derivatives are re
sented as polynomials iny. Since each node is linked t
other nodes, the computation of thenth derivative can be
thought of as expanding a tree~with arbitrary number of
branches! of depthn.

The traversal or expansion of the tree can be done
depth-first fashion or a breadth-first fashion. Each has a
ferent computational complexity. A simple depth-first tr
versal requires only a small amount of memory of ordern.
However, the time complexity is at least exponential,bn,
with a large baseb. A breadth-first algorithm consume
memory exponentially, even after the number of the r
equations has been reduced by taking the symmetry of
problem into account. The idea of dynamic programming c
be incorporated in the breadth-first expansion where the
termediate results are stored and referred to. To achieve
best performance, a hybrid of strategies is used to reduce
computational complexity:

~i! Each configuration~pattern! is transformed into its ca-
nonical representation, since all configurations related by
tice symmetry are considered as the same configuration

~ii ! We use breadth-first expansion to avoid repeated c
putations involving the same configuration. If a configurati
has already appeared in an earlier expansion, a pointer r
ence is made to the old configuration. Each configuration
stored in memory only once. However, storing of all t
distinct configurations leads to a very fast growth in memo
consumption.

~iii ! The last few generations in the tree expansion us
simple depth-first traversal to curb the problem of memo
explosion.

~iv! Parallel computation proves useful. The longest se
is obtained by a cluster of 16 Pentium Pro PCs with h
speed network connection~known as Beowulf!.

The program is controlled by two parametersD andC. D
is the depth of breadth-first expansion of the tree. Wh
depthD is reached, we no longer want to continue the n
mal expansion in order to conserve memory. Instead,
consider each leaf node afresh as the root of a new tree.
derivatives up to (n2D)th order are computed for this lea
node. The expansion of the leaf nodes is done in serial
that the memory resource can be reused. The parametC
controls the number of lastC generations that should b
computed with a simple depth-first expansion algorithm. I
a simple recursive counting algorithm, which uses very lit
memory, and can run fast if the depthC is not very large. In
this algorithm the lattice symmetry is not treated. The b
choice of parameters isD56 andC52 on a DEC AlphaS-
tation 250/266 workstation. The computer time and mem
usage are presented in Table I. As we can see from the ta
each new order requires more than a factor of ten CPU t
and about the same factor for memory if memory is n
reused. This is the case until the orderD1C11, where no
fresh leaf-node expansion is made. There is a big jump~a
factor of 60! in CPU time from 9th order to 10th order, bu
with a much smaller increase in memory usage. This is
to the change of expansion strategy. Finally the longest 1
order series is obtained by parallel computation on a 16-n
Pentium Pro 200 MHz cluster in 12 days. The number
distinct nodes generated to ordern is roughly 1

10011n. To
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57 6551NONEQUILIBRIUM RELAXATION OF THE TWO- . . .
12th order, we have examined about 1010 distinct nodes. The
series data are listed in Table II.

IV. DYNAMICAL SCALING

The traditional method of determining the dynamic
critical exponentz is to consider the time-displaced equilib
rium correlation functions. However, one can alternativ
look at the relaxation towards thermal equilibration. The b
sic assumption is the algebraic decay of the magnetizatio
Tc ,

^s0&5m'ct2b/nz, t→`. ~20!

This scaling law can be obtained intuitively as follows. Sin
the relaxation time and the correlation length are rela
throught}jz by definition, after timet, the equilibrated re-
gion is of sizet1/z. Each such region is independent of t
others, so the system behaves as a finite system of li
lengthj}t1/z. According to finite-size scaling@50#, the mag-
netization is of orderj2b/n on a finite system of lengthj.
Each region should have the same sign for the magnetiza
since we started the system with all spins pointing in
same direction. The total magnetization is equal to that o
correlated region, givingm}t2b/nz.

TABLE I. CPU time and memory usage for the series expans
of relaxation of magnetization, measured on an AlphaStation 2
266 workstation.

n CPU time~sec! Memory ~Mbyte!

6 0.13 0.03
7 1.8 0.27
8 25 3
9 358 34

10 23600 51
11 939 000 70
12a 1.63107 85

aActual computations are done on a 16-node Pentium Pro 200 c
ter.
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The same relation can be derived from a more gen
scaling assumption@51#,

m~ t,e!'ebf~ tenz!, e5
T2Tc

Tc
. ~21!

By requiring thatm(t,e) is still finite as the scaling argume
tenz→0 ande→0 with fixed t, we get Eq.~20!.

Equation~20! is only true asymptotically for larget. It
seems that there is no theory concerning leading corre
to the scaling. As a working hypothesis, we assume tha

m'ct2b/nz~11bt2D!. ~22!

The Monte Carlo simulation results as well as current se
analysis seem to support this withD near 1. Another poss
bility might be z52 with logarithmic correction@52#.

V. ANALYSIS OF SERIES

A general method for extending the range of converge
of a series is the Pade´ analysis@53,54# where a series i
approximated by a ratio of two polynomials. We first look
the poles and zeros of the Pade´ approximants in variables
5t/(t11) for m. Sincet varies in the range of@0,̀ ), it is
easier to look ats, which maps the interval@0,̀ ) to @0,1).
There are clusters of zeros and poles in thes interval (1,2),
which corresponds to negativet. But interval@0,1) is clear of
singularities, which gives us hope for analytic continuat
to the whole interval@0,1). If we assume the asympto
behaviorm}t2a, thend ln m/dt52a/t'2a(12s) for large t
or s→1. This means that the Pade´ approximant should giv
a zero arounds51. We do observe zeros near 1. But it
typically a pair of zeros off the real axis together with a p
at the real axis near 1, or sometimes, only a pair of real ze
These complications make a quantitative analysis difficu

Since we know the exact singular point~corresponding to
t5`), we use the biased estimates by considering the f
tion

on
50/

lus-
TABLE II. Series-expansion coefficients (nth derivative! for a single spin̂ s0& t and nearest-neighbor spin correlation^s0s1& t .

n
dn^s0&t

dtn U
0

dn^s0s1&t

dtn U
0

0 1 1
1 211(2A2)/3 221(4A2)/3
2 13/92A2 (56239A2)/9
3 (15211A2)/27 2(22491175A2)/27
4 253/3125/A2 (198821399A2)/54
5 (41175229111A2)/486 (30834221919A2)/486
6 (266133146680A2)/1458 2(21428691101087A2)/243
7 (2125718825188903747A2)/34992 5(18191091212867401A2)/17496
8 17(92513582265418301A2)/34992 (219071983021548846809A2)/69984
9 (24294375539031303660675715A2)/1259712 (22890286932171204371192813A2)/314928
10 (493163532766623487215692619A2)/3779136 (43146864055759230509318092215A2)/3779136
11 (182142539138153121287938652305897A2)/181398528 (29577920896552131677259915390707A2)/10077696
12 7(21076163366775732117609621330268025A2)/272097792 (4259621642237742982301200006005168631A2)/1088391168
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F~ t !5
d ln m

d ln t
'2

b

nz
. ~23!

An effective exponent zeff(t) is defined by zeff(t)
52b/@nF(t)#521/@8F(t)#.

Again we prefer to use the variables to bring the infinity
to a finite value 1. Due to an invariance theorem@53#, the
diagonal Pade´ approximants ins andt are equal exactly. Fo
off-diagonal Pade´ approximants,s is more useful since the
approximants do not diverge to infinity.

We use methods similar to that of Dickmanet al. @55# and
Adler @11#. The general idea is to transform the functio
m(t) into other functions that one hopes to be better beha
than the original function. In particular, we require that at
→`, the function approaches a constant related to the ex
nentz. The first transformation is Eq.~23!. A second family
of transformations is

Gp~ t !5

d ln E
0

t

m~ t8!pdt8

d ln t
'12

p

8z
, ~24!

wherep is a real positive number. One can show that the t
functions are related by

F~ t !5
1

pS Gp~ t !211
d ln Gp~ t !

d ln t D . ~25!

The last transform is

H~ t !5F~ t !1
1

D
t
dF

dt
, ~26!

whereD is an adjustable parameter, andF can also be re-
placed byGp . If the leading correction to the constant part
of the form t2D, the transformation will eliminate this cor
rection term.

The transformation of the independent variablet to other
variables is important to improve the convergence of
Padéapproximants. We found that it is useful to conside
generalization of the Euler transform,

u512
1

~11t !D . ~27!

The parameterD is adjusted in such a way as to get be
convergence among the approximants. Since fort→` or u
→1, a Pade´ approximant nearu51 is an analytic function in
u, which implies that the leading correction to scaling is
the formt2D. Note thatD51 corresponds to the Euler tran
formation (u5s whenD51).

One of the fundamental difficulties of the transformati
method is that one does not knowa priori that a certain
transformation is better than others. Worse still, we can e
ily get misleading apparent convergence among different
proximants. Thus, we need to be very careful in interpret
our data. Specifically, we found that Eq.~23! gives a less
satisfactory result than that of Eq.~24!, where the indepen
dent variablet is transformed intou according to Eq.~27!.
Figure 1 is a plot of all the Pade´ approximants of order
@N,D#, with N>4, D>4, andN1D<12, as a function of
d

o-

o

e

t

f

s-
p-
g

the parameterD, for G1(t5`). Good convergence is ob
tained atD51.217 withz'2.170. The estimatesz vary only
slightly with p, at about 0.005 asp varies from 0.5 to 2.
Using F(t) of Eq. ~23!, the optimal value isD51.4 with z
'2.26. Using the functionH does not seem to improve th
convergence. Even though the value 2.170 seems to b
very good result, we are unsure of its significance since th
are large deviations of the Pade´ approximation to the func-
tion F(t) for 1/t,0.2 from the Monte Carlo result of Fig. 2

An objective error estimate is difficult to give. Estimate
from the standard deviation of the approximants tend to g
a very small error but incompatible among different metho
of analysis. Different Pade´ approximants are definitely no
independent; we found that@N,D# Padéis almost equal to
@D,N# Padéto a high precision. A conservative error w
quote from the series analysis is 0.1.

Analysis of the energy series is carried out similarly w
m replaced bŷ s0s1&2A2/2, where the constantA2/2 is the
equilibrium value. The larget asymptotic behavior ist21/z

@56#. Both F andG functions give comparable results, bett

FIG. 1. Pade´ estimates of the dynamical critical exponentz
usingG1(t5`), plotted as a function ofD, the transformation pa-
rameter. On this scale, the Pade´ approximant of order@N,D# is
indistinguishable from@D,N#.

FIG. 2. Effective exponentzeff(t) plotted against inverse time
1/t. The circles are Monte Carlo estimates based on Eq.~28!; the
continuous curve is obtained from the@6,6# Padéapproximant of
G1 in variableu, transformed back toF through Eq.~25!.



ve
de

to
uf
a

h
s

m

e

r

c

ge

d

te
E
o

oa
re
x
.
e
a
v
nc
im

ls

all

or

ve

of
ble
n a

ew
the

the
Fig.

me
hat

the

ne-
od
r for
are
an
h-
pro-
to
the
re

rch
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convergence is obtained forD.1. The value forz is about
2.2, but good crossing of the approximants are not obser
We feel a better analysis method or longer series is nee

VI. MONTE CARLO SIMULATION

Our motivation for a Monte Carlo calculation was
check the series result. It turns out that the data are s
ciently accurate to be discussed in their own right. Such
improved accuracy is achieved by using Eq.~19!, which per-
mits a direct evaluation of the effective exponentzeff(t).

We compute the magnetizationm5^s0&, energy per bond
^s0s1&, and the three-spin correlationm35^s1s2s3& where
the three spins are the nearest neighbors of a center site
ing one of the neighbors missing in the product. With the
quantities, the logarithmic derivative, Eq.~23!, can be com-
puted exactly without resorting to finite differences. Fro
Eq. ~19! we can write~at T5Tc)

F~ t !5
d ln m

d ln t
52tF11

A2

6 S m3

m
25D G52

1

8zeff~ t !
.

~28!

The above equation also defines the effective expon
zeff(t), which should approach the true exponentz as t→`.

The estimates for the effective exponent based on the
tio of one spin to three-spin correlation, Eq.~28!, have
smaller statistical errors in comparison to a finite differen
scheme based onm(t) and m(t11). Error propagation
analysis shows that the latter has an error 5 times lar
Both methods suffer from the same problem that errordz
}t. Thus, working with very larget does not necessarily lea
to any advantage.

In order to use Eq.~28!, we need exactly the same flip ra
as in the analytic calculations, namely, the Glauber rate,
~6!. The continuous time dynamics corresponds to a rand
selection of a site in each step. Sequential or checkerb
updating cannot directly be compared with the analytic
sults. However, it is believed that the dynamical critical e
ponentz does not depend on the details of the dynamics

We note that a Monte Carlo simulation is precisely d
scribed by a discrete Markov process while the series exp
sion is based on the continuous master equation. Howe
the approach to the continuous limit should be very fast si
it is controlled by the system size—the discreteness in t
is 1/L2. We have used a system of 1043104, which is suffi-
ciently large. Apart from the above consideration, we a
d.
d.

fi-
n

av-
e

nt

a-

e

r.

q.
m
rd
-
-

-
n-
er,
e
e

o

checked the finite-size effect. Clearly, ast.Lz, the finite-
size effect begins to show up. We start the system with
spins up,m(0)51, and follow the system tot599. For t
,100, we did not find any systematic finite-size effect f
L>103. So the finite-size effect atL5104 andt,100 can be
safely ignored.

Figure 2 shows the Monte Carlo result for the effecti
exponent as a function of 1/t. The quantitiesm, m3, and
^s0s1& are averaged over 1868 runs, each with a system
108 spins. The total amount of spin updating is compara
to the longest runs reported in the literature. Based o
least-squares fit fromt530 to 99, we obtain

z52.16960.003. ~29!

The error is obtained from the standard deviation of f
groups of independent runs. An error estimate based on
residues in the linear least-squares fit is only half of
above value, which is understandable since the points in
2 are not statistically independent.

In Fig. 2, we also plot a series result for theF(t), obtained
from the @6,6# Padéof G1(u) and Eq.~25!. Substantial de-
viations are observed for 1/t,0.2, even though in the 1/t
→0 limit, both results are almost the same. This casts so
doubt on the reliability of the series analysis. We note t
the t→` limit of the functionF(t) is invariant against any
transformation int which mapst5` to `. Thus, the discrep-
ancy might be eliminated by a suitable transformation in
Padéanalysis.

VII. CONCLUSION

We have computed a series for the relaxation of mag
tization and energy at the critical point. The same meth
can be used to obtain a series at other temperatures o
other correlation functions. The analyses of the series
nontrivial. We may need many more terms before we c
obtain results with accuracy comparable to the hig
temperature series. We have also studied the relaxation
cess with Monte Carlo simulation. The ratio of three spin
magnetization is used to give a numerical estimate of
logarithmic derivatives directly. This method gives a mo
accurate estimate for the dynamical critical exponent.
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